
Brownian motion and Stochastic Calculus
Dylan Possamaï

Assignment 7—solutions

Exercise 1

Let (Bt)t∈[0,1] be a Brownian motion on (Ω, F ,P) and define the process (Mt)t≥0 by Mt := sup0≤s≤t Bs. Consider the
random variable

D := sup
0≤s≤1

{
sup

0≤t≤s
{Bt − Bs}

}
.

That is, D characterises the maximal possible ‘downfall’ in trajectories of the Brownian motion on the time interval
[0, 1].

1) Show that D
law= sup0≤t≤1 |Bt|.

Hint: you can use (and prove if you want!) Lévy’s theorem, which states that the processes M − B and |B| have
the saw law under P.

2) Show that sup0≤t≤1 |Bt|
law= 1/

√
T̄1, where T̄1 := inf{t > 0 : |Bt| ≥ 1}.

3) Conclude that EP[D] =
√

π/2.

1) Let Zt := Mt − Bt and Yt := |Bt|. With the definition of D we have to check that

sup
0≤t≤1

Zt
law= sup

0≤t≤1
Yt.

Since both Z and Y are continuous processes, it suffices to check that

sup
t∈[0,1]∩Q

Zt
law= sup

t∈[0,1]∩Q
Yt. (0.1)

Let (tn)n∈N be a counting sequence in [0, 1] ∩Q. By Lévy’s theorem, the processes Z and Y have the same
law, and therefore for n ∈ N the random variables

Zn := sup(Zt1 , Zt2 , . . . , Ztn
), Yn := sup(Yt1 , Yt2 , . . . , Ytn

),

have the same law. Since Zn and Yn converge monotonically to supt∈[0,1]∩Q Zt and supt∈[0,1]∩Q Yt we have
for all x ∈ R

P
[

sup
t∈[0,1]∩Q

Zt ≤ x

]
= P

[ +∞⋂
n=0

{Zn ≤ x}
]

= lim
n→+∞

P[Zn ≤ x]

= lim
n→+∞

P[Yn ≤ x]

= P
[

sup
t∈[0,1]∩Q

Yt ≤ x

]
,

which yields (0.1).

2) We recall the self-similarity property of Brownian motion, i.e., for c > 0

(cBt/c2)t≥0
law= (Bt)t≥0.
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Therefore, for x > 0

P
[

sup
0≤t≤1

|Bt| ≤ x

]
= P[ sup

0≤t≤1
|Bt/x2 | ≤ 1]

= P
[

sup
0≤t≤1/x2

|Bt| ≤ 1
]

= P[T̄1 ≥ x−2]

= P[1/

√
T̄1 ≤ x].

3) Using the identity √
2/π

∫ ∞

0
e−x2/(2σ2)dx = σ,

and Tonelli’s theorem we have

EP[D] = EP
[

sup
0≤t≤1

|Bt|
]

= EP[1/

√
T̄1] =

√
2/π

∫ ∞

0
EP[e−x2T̄1/2]dx.

From a previous exercise, we know that the Laplace transform of T̄1 is

EP[e−µT̄1 ] = 1/cosh(
√

2µ), ∀µ > 0.

Putting everything together, we have

EP[D] =
√

2/π

∫ ∞

0

dx

cosh(x) = 2
√

2/π

∫ ∞

0

exdx

e2x + 1

= 2
√

2/π

∫ ∞

1

dy

y2 + 1

= 2
√

2
π

π

4 =
√

π

2 .

Exercise 2

Fix a probability space (Ω, F ,P), and let B be a Brownian motion in Rd (with respect to its P-completed natural
filtration) for some integer d ≥ 2. For any x ∈ Rd, we let Bx := x + B, and for any x ∈ Rd \ {0}, and any
0 < a < ∥x∥ < b, we let

τa := inf{t ≥ 0 : ∥Bx
t ∥ ≤ a}, τb := inf{t ≥ 0 : ∥Bx

t ∥ ≥ b}.

1) Assume d ≥ 3 and show that Xx
t :=

∥∥Bx
τa∧t

∥∥2−d, t ≥ 0, is a bounded (F,P)-martingale.

2) Assume that d = 2, and show that Y x
t := − log

(∥∥Bx
τa∧τb∧t

∥∥)
, t ≥ 0, is a bounded (F,P)-martingale.

3) Show that for any x ∈ Rd \ {0}, P
[
Bx

t ̸= 0, ∀t ≥ 0
]

= 1.

4) Assume d ≥ 3, and show that for any x ∈ Rd, P
[

limt→+∞ ∥Bx
t ∥ = +∞

]
= 1.

1) For any C2 function g : (0, +∞) −→ R, we can define the radial function f : Rd \ {0} −→ R by

f(x) := g(∥x∥), x ∈ Rd \ {0}.

Direct computations show that the Laplacian of f is given by

∆f(x) = g′′(∥x∥) + d − 1
∥x∥

g′(∥x∥), x ∈ Rd \ {0}.
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Consider the map g(r) := r2−d, which is C2 on (0, +∞). We then have

∆f(x) = (2 − d)(1 − d)∥x∥−d + (2 − d)(d − 1)∥x∥−d = 0, x ∈ Rd \ {0},

which means that f is harmonic on Rd \ {0}. By applying Itô’s formula, we deduce

Xx
t =

∥∥Bx
τa∧t

∥∥2−d = f
(
Bx

τa∧t

)
= f(x) +

∫ τa∧t

0
∂xf(Bx

s )dBs,

from which the (F,P)–local martingale property is immediate. In addition, since d ≥ 3, we have that

0 ≤ Xx
t ≤ a2−d,

which provides the required boundedness property, and ensures that we have an (F,P)-martingale.

2) It is the exact same argument as in 1) except with g(r) := − log(r).

3) For the cases d ≥ 3 and d = 2, we let g and f be as in 1) and 2) respectively. Consider then the
martingale Mx

t := f(Bx
t∧τa∧τb

), t ≥ 0 (and notice that this coincides with Xx when d ≥ 3), and recall that
τa ∧ τb is finite P–a.s. because τb is. Since Mx is bounded, it is P–uniformly integrable and

g(∥x∥) = Mx
0 = EP

[
lim

t→+∞
Mt

]
= g(a)P[τa ≤ τb] + g(b)P[τb < τa],

which leads to
P[τa ≤ τb] = g(∥x∥) − g(b)P[τb < τa]

g(a) .

Since in both cases, g goes to +∞ at 0, we obtain by letting a go to 0 and using dominated convergence

P[τ0 ≤ τb] = 0, b > ∥x∥.

Taking the limit again as b goes to +∞, we now get

P
[
τ0 < lim

b→+∞
τb

]
= 0.

Since Bx is (F,P)–locally bounded (it is continuous), we must have limb→+∞ τb = +∞, so that τ0 = +∞,
P–a.s. which is the desired result.

4) By translation invariance of Brownian motion, we can assume without loss of generality that x ̸= 0.
For d ≥ 3, define

Mx
t := g

(
∥Bx

t ∥
)

= ∥Bx
t ∥2−d.

This is P–a.s. well defined for all t ≥ 0, since τ0 = +∞, P–a.s. by 3). As in 1), Mx is an (F,P)–local
martingale. In this case, while Mx is not bounded, it is a non-negative (F,P)–local martingale, hence
an (F,P)–super-martingale. Since Mx is a non-negative (F,P)–super-martingale, it also follows by the
super-martingale convergence theorem that Mx

t −→t→+∞ Mx
∞, P–a.s. for some F∞−-measurable random

variable Mx
∞. Noting that

lim sup
t→+∞

∥Bx
t ∥ = +∞, P–a.s.,

so that
Mx

∞ = lim
t→+∞

Mx
t = lim inf

t→+∞
∥Bx

t ∥2−d = 0, P–a.s.,

and thus as desired
∥Bx

t ∥ = (Mx
t )1/(2−d) −→

t→+∞
+∞, P–a.s.

Exercise 3
Let B be a Brownian motion in R3, 0 ̸= x ∈ R3 and define the process M = (Mt)t≥0 by

Mt = 1
∥x + Bt∥

.

This is well defined as a 3-dimensional Brownian motion does not hit points, as seen in the previous exercise.
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1) Show that M is a continuous local martingale. Moreover, show that M is bounded in L2(R, F ,P), that is

sup
t≥0

EP[|Mt|2] < +∞.

2) Show that M is a strict local martingale, i.e., M is not a martingale.

Hint: Show that EP[Mt] −→ 0 as t → +∞. To this end, similarly to 1), compute EP[Mt] and use the reverse
triangle inequality as a first estimate. Then compute the resulting integral using spherical coordinates.

1) Since the 3-dimensional Brownian motion B = (B1, B2, B3)⊤ takes values in the open set D := Rd \{−x},
P–a.s., we can apply Itô’s formula to Mt = f(Bt) with f : D −→ (0, +∞) given by f(y) := 1

∥x+y∥ .

For i ∈ {1, 2, 3}, we have

∂f

∂yi
(y) = − xi + yi

∥x + y∥3 ,
∂2f

(∂yi)2 (y) = −∥x + y∥2 + 3(xi + yi)2

∥x + y∥5 .

It follows that ∆f = ∂2f
(∂y1)2 + ∂2f

(∂y2)2 + ∂2f
(∂y3)2 = 0 on D. Hence, Itô’s formula yields

Mt = M0 +
∫ t

0
∇f(Bs) · dBs + 1

2

∫ t

0
∆f(Bs)ds = 1

∥x∥
−

3∑
i=1

∫ t

0

xi + Bi
s

∥x + Bs∥3 dBi
s.

Thus, M is a continuous (F,P)–local martingale.

Let us show the second part. For t > 0, using the distribution of the 3-dimensional Brownian motion,
we obtain that

EP[
|Mt|21{|Mt|≥ 2

∥x∥ }
]

= (2πt)− 3
2

∫
∥x+y∥≤ ∥x∥

2

1
∥x + y∥2 exp

(
− ∥y∥2

2t

)
dy

= (2πt)− 3
2

∫
∥y∥≤ ∥x∥

2

1
∥y∥2 exp

(
− ∥y − x∥2

2t

)
dy

≤ (2πt)− 3
2

∫
∥y∥≤ ∥x∥

2

1
∥y∥2 exp

(
− (∥x∥ − ∥y∥)2

2t

)
dy

≤ (2πt)− 3
2 exp

(
− ∥x∥2

8t

) ∫
∥y∥≤ ∥x∥

2

1
∥y∥2 dy

= (2πt)− 3
2 exp

(
− ∥x∥2

8t

) ∫ ∥x∥
2

0

∫ 2π

0

∫ π

0

1
r2 r2 sin(θ)dθdφdr

≤ C(2πt)− 3
2 exp

(
− ∥x∥2

8t

)
,

where C is a finite positive constant.

Now, the function t 7−→ (2πt)− 3
2 exp

(
− ∥x∥2

8t

)
is continuous on (0, +∞) and converges to 0 as t → 0 and

t → ∞, hence it is bounded on (0, ∞). Therefore, we conclude that

sup
t≥0

EP[|Mt|2] ≤ 4
|x|2

+ sup
t≥0

EP[
|Mt|21{|Mt|≥ 2

∥x∥ }
]

< +∞.

It follows that M is bounded in L2(R, F ,P).
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2) For t > 0, using spherical coordinates,

EP[Mt] = (2πt)−3/2
∫
R3

1
∥x + y∥

exp
(

− ∥y∥2

2t

)
dy

= (2πt)−3/2
∫
R3

1
∥y∥

exp
(

− ∥y − x∥2

2t

)
dy

≤ (2πt)−3/2
∫
R3

1
∥y∥

exp
(

− (∥y∥ − ∥x∥)2

2t

)
dy

= (2πt)−3/2
∫ ∞

0

∫ 2π

0

∫ π

0

1
r

exp
(

− (r − ∥x∥)2

2t

)
r2 sin(θ)dθdφdr

= 4π(2πt)−3/2
∫ ∞

0
r exp

(
− (r − ∥x∥)2

2t

)
dr

= 4π(2πt)−3/2
∫ ∞

−∥x∥
(r + ∥x∥) exp

(
− r2

2t

)
dr

= 4π(2πt)−3/2
( ∫ ∞

−∥x∥
r exp

(
− r2

2t

)
dr + ∥x∥

∫ ∞

−∥x∥
exp

(
− r2

2t

)
dr

)
≤ 4π(2πt)−3/2

([
− t exp

(
− r2

2t

)]∞

−∥x∥
+ ∥x∥

√
2πt

)
= 4π(2πt)−3/2

(
t exp

(
− ∥x∥2

2t

)
+ ∥x∥

√
2πt

)
= O

(
t− 1

2
)
, (t −→ +∞).

Hence, EP[Mt] −→ 0 as t −→ +∞. Since EP[M0] = 1
∥x∥ > 0, M cannot be an (F,P)-martingale.

Exercise 4

Let B be a Brownian motion. For all y ∈ R⋆
+, we define

Ty := inf
{

t ≥ 0 : Bt ≥ y
}

.

Fix a > 0 and b > 0 and define
Ta,b := T−a ∧ Tb.

1) Justify that Ta,b is an FB,P–stopping time.

2) Fix θ ∈ R and define Xθ,a
t by

Xθ,a
t := sinh(θ(Bt + a)) exp

(
− θ2

2 t

)
.

Show that Xθ,a is an (FB,P,P)-martingale.

3) Deduce that

EP
[

exp
(

− θ2

2 Tb

)
1{Tb<T−a}

]
= sinh(θa)

sinh(θ(a + b)) ,

and then that
EP

[
exp

(
− θ2

2 T−a

)
1{Tb>T−a}

]
= sinh(θb)

sinh(θ(a + b)) ,

and finally that

E
[
exp

(
−θ2

2 Ta,b

)]
=

cosh
( θ(a−b)

2
)

cosh
( θ(a+b)

2
) .
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4) Deduce
P

[
Tb < T−a

]
= a

a + b
, P

[
Tb > T−a

]
= b

a + b
,

and then that the random variable sup0≤t≤T−1 Bt has the same law as (1 − U)/U where U is uniform on [0, 1].

1) It is the minimum between two stopping times, and thus a stopping time.

2) The (local) martingale property is direct from, for instance, Itô’s formula. Since B has exponential
moments of any order, one can check that it is, in fact, a true martingale.

3) The martingale property and the optional sampling theorem ensure that, with T n
a,b := Ta,b ∧ n, for any

n ∈ N,

EP
[
sinh

(
θ
(
BT n

a,b
+ a

))
exp

(
− θ2

2 T n
a,b

)]
= Xθ,a

0 = sinh(θa).

Now we also have

sinh
(
θ
(
BT n

a,b
+a

))
exp

(
− θ2

2 T n
a,b

)
= 1{Ta,b≥n}sinh(θ(Bn +a))e− θ2

2 n +1{Ta,b<n}1{Tb<T−a}sinh(θ(b+a)) exp
(

− θ2

2 Tb

)
,

and the left-hand side converges P–a.s. to 1{Tb<T−a}sinh(θ(b + a)) exp
(

− θ2

2 Tb

)
as n goes to +∞, since by,

for instance, the law of iterated logarithm for Brownian motion, Ta,b < +∞, P–a.s. Now we also have
that ∣∣∣∣sinh

(
θ
(
BT n

a,b
+ a

))
exp

(
− θ2

2 T n
a,b

)∣∣∣∣ ≤ sinh(θ(b + a)),

so that by dominated convergence, we get

EP
[
1{Tb<T−a}sinh(θ(b + a)) exp

(
− θ2

2 Tb

)]
= sinh(θa),

which is the first stated equality.

For the second one, by symmetry for Brownian motion, we can apply the previous result to −B, and
use that sinh(−x) = −sinh(x). The last one follows immediately by adding the two previously obtained
equalities and standard formulas for hyperbolic functions.

4) For the first part, it suffices to use again dominated convergence and to let θ go to 0 in the previous
first two equalities. Finally, we have

P
[

sup
0≤t≤T−1

Bt < x

]
= P[Tx > T−1] = x

x + 1 , P[(1 − U)/U < x] = P[U > 1/(x + 1)] = 1 − 1
x + 1 = x

x + 1 ,

which is the desired result.
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